Tetrahedron Letters No. 41, pp 3637 - 3640, 1977. Pergamon Press. Printed in Great Britain.

NEW CONGENERS OF CYTOTOXIC NOR-DITERPENOID DILACTONES IN PODOCARPUS NAGI: TWO CLO LACTONES FROM SEED EXTRACT

Yuji Hayashi*, Yo-ichi Yūki and Takeshi Matsumoto Department of Chemistry, Faculty of Science, Osaka City University Sugimotocho, Sumiyoshiku, Osaka 558, Japan

Takeo Sakan

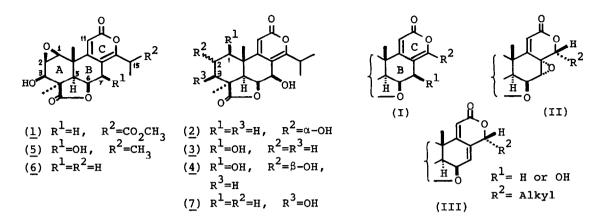
The Institute of Food Chemistry

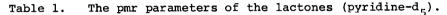
Shimamotocho, Mishimagun, Osaka 618, Japan

(Received in Japan 11 July 1977; received in UK for publication 26 August 1977)

In the preceding paper¹⁾, we have presented the isolation of three highly oxygenated new members of nor- and bisnor-diterpenoid dilactones²⁾ in <u>Podocarpus</u> <u>nagi</u> Zoll. et Moritzi. Further investigation of the cytotoxic minor components³⁾ in seed endosperms permitted the isolation of additional two C₁₉ dilactones, <u>1</u> and <u>2</u>, which show Rf values (SiO₂ plate) comparable to those of nagilactone A (<u>3</u>) and C (<u>5</u>), respectively^{4a~C)}. The ir and uv spectra indicated the presence of two lactone groups, an α -pyrone group (λ_{max} 300 nm, ν_{max} 1700, 1620, 1540 cm⁻¹) and a γ -lactone group (ν_{max} 1760~1780 cm⁻¹), in both of the components, as reported for the related dilactones^{1,4}).

The compound (<u>1</u>), mp 238~9°, $C_{20}H_{22}O_8$, m/e(20 eV) 390(M⁺,64), 359(22), 331 (57), 303(100), 289(49), 288(47), 260(31), 247(19), 229(23), 201(34); [θ]^{MeOH}_{295nm} +11100, has a methoxycarbonyl group, which is proved by pmr (OCH₃: 3.58 ppm), cmr (CO: 170.4 ppm; two lactone carbonyl groups: 162.5, 177.7 ppm) and ir (1730 cm⁻¹) spectra. Mass fragment peaks, m/e 359(M⁺-OCH₃) and 331(M⁺-CO₂CH₃), also supported this fact. The pmr spectrum of <u>1</u> closely resembles ($\Delta\delta < 0.1$ ppm) that of nagilactone D (<u>6</u>)^{4a)} in whole region, except for the signals due to near-by protons to the methoxycarbonyl group. Thus, a two-proton quartet (2.47 ppm) and a three-proton triplet (1.10 ppm) in <u>6</u> are replaced by a one-proton quartet (4.26 ppm) and a three-proton doublet (1.60 ppm), respectively.


3637


The signals of H-7 α and H-7 β also displace (0.2~0.3 ppm) to lower field in the compound (<u>1</u>). Therefore, 15-methoxycarbonyl-nagilactone D is proposed for the structure of <u>1</u>. The stereochemistry at C-15 remains undetermined.

The compound (2), mp 243~5° (dec), $C_{19}H_{24}O_6$, m/e(20 eV) 348(M⁺, 100), 320 (96), 305(79), 287(29), 277(32), 259(25), 245(20), 231(10), 215(15), 213(16), 205(24), 203(17), 189(25); $[0]_{293nm}^{MeOH}$ +3980, gave a diacetate, $C_{23}H_{28}O_8$, m/e(20eV) 432(M⁺). The fragmentation of 2 by electron impact is closely similar to that of nagilactone A (3)⁸⁾. Three methine hydrogens, $H-5\alpha$, $H-6\alpha$ and $H-7\alpha$, are correlated to each other by pmdr. The chemical shift of H-7 α (the carbinyl proton of one hydroxyl group) at unusually low field (5.54 ppm in 2: 6.73 ppm in diacetate) shows that the proton should be at an adjacent position to the pyrone The second hydroxyl group is placed at 2α -position from the following ring. (i) The compound (2) is different from nagilactone A (3) or sellowin C reasons: (7)⁶⁾ by pmr and mp comparisons; this fact eliminates a possibility of 1β or 3β position. (ii) The carbinyl proton of this hydroxyl group couples with four adjacent methylene protons at C-l and C-3 (parameters are shown in Table 1), and appears in a very broad multiplet signal ($W_{1/2} \simeq 40$ Hz). Since the ring A of 2 should take a chair form $^{4c,5)}$, the carbinyl hydrogen must be at 2 β (axial). (iii) Practically no acetylation-shift of the H-ll signal is observed in a conversion of 2 (6.20 ppm) to the diacetate (6.15 ppm), while the corresponding signal of the related lactones with $l\beta$ -hydroxyl group shows a large high-field shift (0.9~1.3 ppm, in pyridine) on acetylation^{1,4a)}. Thus, 1-deoxy-2ahydroxy-nagilactone A is proposed for the structure of 2.

The absolute configuration of the two components should be the same as those of nagilactone A (3) and B (4) 4c , as shown in the formula, since the same sign of Cotton effect was obtained by cd measurements.

There have been known three major types, I, II and III, of B/C ring system in naturally occurring <u>Podocarpus</u> dilactones, although the biogenetic preference of each type in intact plant tissues is still unknown. It should be interesting that only the type I dilactones (nine lactones^{1,4a}) including two, reported here) have been found from seed endosperms of <u>Podocarpus nagi</u>, while the root bark mainly contains other two types^{4d,7)}, II and III.

Lactones	СН [*] 3	сн ₃ **	нl	н ²	н ³	н ⁵	н6	н ^{7 β}	H ^{7α}	H11	H12
(<u>1</u>) [#]	1.44 1.52	1.60 (7.5)	3.71 d (4.0)	3.60 dd (4.0, 6.0)	4.64 d (6.0)	1.96 d (6.5)	4.98 dt (6.5, 6.5, 9.5)	2.96 dd (6.5, 17.0)	3.65 dd (9.5, 17.0)	6.72 s	4.26 qua (7.5)
(<u>6</u>)	1.44 1.51	1.10 t (7.5)	3.68 d (4.0)	3.52 dd (4.0, 6.0)	4.61 d (6.0)	1.88 d (6.5)	4.89 dt (6.5, 6.5, 10.0)	2.71 dd (6.5, 17.0)	3.34 dd (10.0, 17.0)	6.56 s	2.47 qua (7.5)
(<u>2</u>)	1.40 1.76	1.23 (7.0) 1.30 (7.0)	***	4.25 br m	***	1.78 d (6.5)	5.03 dd (6.5, 8.5)		5.54 d (8.5)	6.20 s	3.41 m (7.0)
(<u>2</u>)-AC2	1.36 1.47	(7.0) (7.0) 1.14 (7.0)	5.2	5.2 - br s	5.2 	1.90 d (6.5)	5.28 dd (6.5, 9.0)		6.73 d (9.0)	6.15 s	3.06 m (7.0)
(<u>3</u>)	1.33 2.01	1.26† (6.6)	4.1 br			1.83 d (5.7)	5.17 dd (5.7, 8.6)		5.67 d (8.6)	7.38 s	3.51 m (6.6)
(<u>3</u>)-Ac ₂	1.24 1.55	1.13 t† (7.0)	5.18 br t			1.94 d (5.5)	5.30 dd (5.5, 8.5)		6.62 d (8.5)	6.03 s	3.09 m (7.0)
(7) ^{6b)}	1.32 1.98	1.28 t† (6.0)	2.52 m 1.60 m	2.08 m 1.94 m	4.16 br t	1.84 d (6.0)	5.14 dd (6.0, 8.0)		5.64 d (8.0)	7.32 s	3.48 m

* singlet methyl signals. ** doublet methyl signals unless otherwise specified. *** H-1 β : 2.14 ppm, H-1 α : 2.58 ppm, H-3 β : 1.95 ppm, H-3 α : 2.45 ppm. J_{2 β ,1 β}^{=5.5}, J_{2 β ,1 α}^{=13.5}, J_{1 β ,1 α}^{=13.5}, J_{2 β ,3 β}^{=6.5}, J_{2 β ,3 α}^{=9.5}, J_{3 β ,3 α}^{=13.5} Hz. # methoxyl signal: 3.58 ppm (3H, s). + overlapped signals.

s: singlet, d: doublet, t: triplet, dd: double doublet, dt: double triplet, qua: quartet, m: multiplet, br: broad.

Footnotes and References

- 1. Y.Hayashi, Y.Yuki, T.Matsumoto, T.Sakan, Tetrahedron Letters, 1977, in press.
- A survey of the <u>Podocarpus</u> dilactones: K.S.Brown, Jr., W.E.Sanchez L., Biochem. Syst. Ecol., 2, 11 (1974).
- 3. (a) Y.Hayashi, T.Sakan, Y.Sakurai, T.Tashiro, Gann, <u>66</u>, 587(1975). Cytotoxicity of the new members will be published elsewhere; see also, Y.Hayashi, T. Sakan, Y.Sakurai, T.Tashiro, Proc. Japan Cancer Assoc. 35th Annual Meet. (Tokyo), p 138 (1976). (b) S.M.Kupchan, R.L.Baxter, M.F.Ziegler, P.M. Smith, R.F.Bryan, Experientia, 31, 137 (1975).
- 4. (a) Y.Hayashi, S.Takahashi, H.Ona, T.Sakan, Tetrahedron Letters, <u>1968</u>, 2071;
 (b) S.Ito, M.Kodama, M.Sunagawa, H.Honma, Y.Hayashi, S.Takahashi, H.Ona, T. Sakan, T.Takahashi, Tetrahedron Letters, <u>1969</u>, 2951. (c) Y.Hayashi,T.Sakan, K.Hirotsu, A.Shimada, Chem. Letters, <u>1972</u>, 349. (d) Y.Hayashi, J.Yokoi, Y. Watanabe, T.Sakan, Chem. Letters, <u>1972</u>, 759. The orientation of the ring A substituents in nagilactones, C and D, should be revised to 1β,2β-epoxy-3β-hydroxy structure⁹⁾.
- 5. Nagilactone B 2,7-bis-p-bromobenzoate exists in a ring A chair form (X-ray analysis): Y.Hayashi, T.Higuchi, unpublished result.
- (a) K.S.Brown, Jr., W.E.Sanchez L., Tetrahedron Letters, <u>1974</u>, 675. (b) W.E. Sanchez L., K.S.Brown, Jr., T.Nishida, L.J.Durham, A.M.Duffield, An. Acad. Bras. Cienc., <u>42</u>, 77 (1970).
- New components of the types, II and III, have recently been obtained from root bark of <u>P</u>. <u>nagi</u>, Y.Hayashi, T.Matsumoto, Y.Yuki, T.Sakan, Abstr. 36th Annual Meeting Chem. Soc. Japan (Osaka), p 1201 (April, 1977).
- Fragmentation of nagilactone A (20 eV): m/e 348(M⁺,73), 320(100), 305(64), 287(25), 273(14), 259(26), 245(12), 241(13), 231(26), 213(20), 205(61), 203 (26), 187(21).
- 9. J.E.Godfrey, J.M.Waters, Aust. J. Chem., <u>28</u>, 745 (1975); S.K.Arora, R.B. Bates, P.C.C.Chou, W.E.Sanchez L., K.S.Brown, Jr., M.N.Galbraith, J. Org. Chem., 41, 2458 (1976).